Theoretical and Experimental Study of Solid Oxide Fuel Cell (SOFC) Using Impedance Spectra
نویسندگان
چکیده
Solid oxide fuel cell (SOFC) is a promising alternative energy source, with its advantages of high operating efficiency, fuel flexibility, low emissions and relatively low cost. However, there are several challenges concerning the SOFC research. Little is known about the complex interfacial electrochemistry and thermochemistry, and it is also difficult to diagnose problems and optimize cell performance. Therefore, physics-based models are needed to better understand the underlying mechanisms of SOFCs. This research work addressed two important aspects of the numerical modeling of SOFCs: the multicomponent gas diffusion in porous electrode at the anode and the heterogeneous electrocatalysis of oxygen reduction reaction (ORR) at the cathode. First, anode was diagnosed to be mainly controlled by multicomponent gas diffusion inside the anode bulk (supporting) layer, and the Dusty Gas model is identified as an appropriate model to describe the gas diffusion resistance extracted from no bias AC impedance. Anode-supported SOFCs with Ni-yttria-stabilized zirconia (YSZ) anode were used to study the multicomponent gas transport in porous electrodes. A fuel gas mixture of H2-H2O-N2 was fed to the anode and AC impedance data were measured at 800oC by varying hydrogen partial pressure at both no bias and a current of 300 mA. Impedance data were also collected at no bias at three different temperatures (800oC, 850oC and 900oC). For the first time, three models were used to analytically derive the diffusion resistance (Rb), which was then compared to the values extracted from experimental impedance data. The Dusty Gas model yields the best predictions and the tortuosity
منابع مشابه
Performance modeling and parametric investigation of a solid oxide fuel cell (SOFC)
In his paper, performance modeling and parametric study of a tubular solid oxide fuel cell (SOFC) fed by hydrogen was conducted. The components of the fuel cell system and its reactions were entirely modelled and an electrochemical analysis done for it. A variety of modeling parameters including temperature, working pressure and the air mass- flow rate have been investigated in order to observe...
متن کاملThermodynamic Investigation and Optimization of a Power Generation System Based Solid Oxide Fuel Cell Using Taguchi Approach
Fuel cells directly convert chemical energy into electrical power using electrochemical reactions. Solid oxide fuel cell (SOFC) is one of the high-temperature fuel cells that propose a promising future from the standpoint of power generation. In this study, optimization of an SOFC system is performed using Taguchi approach after verification of the model in compare with experimental results. Cu...
متن کاملExperimental Investigation of a Solid Oxide Fuel Cell Stack using Direct Reforming Natural Gas
In this study, a solid oxide fuel cell (SOFC) stack has been successfully fabricated and tested by using direct natural gas. The main objective of this research was to achieve optimal long-term performance of the SOFC stack without carbon deposition by using low-cost natural gas as a fuel. The stack configuration was improved by a new interconnect design and made of cost-effective raw materials...
متن کاملA two-dimensional numerical model of a planar solid oxide fuel cell
A two-dimensional CFD model of a planar solid oxide fuel cell (SOFC) has been developed.This model can predict the performance of SOFC at various operating and design conditions.The effect of Knudsen diffusion is accounted in the porous electrode (backing) and reaction zonelayers. The mathematical model solves conservation of electrons and ions and conservation ofspecies. The model is formulate...
متن کاملDynamic Analysis and Optimal Design of FLPSS for Power Network Connected Solid Oxide Fuel Cell Using of PSO
This paper studies the theory and modeling manner of solid oxide fuel cell (SOFC) into power network and its effect on small signal stability. The paper demonstrates the fundamental module, mathematical analysis and small signal modeling of the SOFC connected to single machine infinite bus (SMIB) system. The basic contribution of the study is to attenuate the low frequency oscillations by optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014